Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells.
نویسندگان
چکیده
Human breast cancers are known to preferentially metastasize to skeletal sites, however, the mechanisms that mediate the skeletal preference (orthotropism) of specific types of cancers remains poorly understood. There is a significant clinical correlation between the expression of bone sialoprotein (BSP) and skeletal metastasis of breast cancers. Our laboratory, as well as others, have proposed the concept that skeletal selective metastasis and associated disease may be attributable to a mimicry of skeletal cellular phenotypes by metastasizing cancer cells. We hypothesize that breast cancer cell expression of phenotypic properties of skeletal cell types, including BSP as one component of that phenotype, is the result of ectopic expression or activity of one or more central transcriptional regulators of bone cell gene expression. To test this hypothesis, we examined the molecular mechanisms that regulate bsp expression in human breast cancer cell lines with previously characterized metastatic potentials. Our results demonstrate that the majority of the distal bsp promoter sequences act to repress BSP expression in cancer cells and that most of the promoter activity resides in the proximal -110 bp of the bsp promoter. In this region, we identified a putative Runx binding element providing a basis for a mechanism for skeletal gene activation. Our results demonstrate that Runx2 is ectopically expressed in breast cancer cells and that one isoform of Runx2 can activate bsp expression in these cells. In addition, we observe that bsp expression is additionally regulated by the homeodomain factor Msx2, another regulator of osteoblast-associated genes. Thus, this is the first report of osteoblast-related transcription factors being expressed in human breast cancer cells and provides a component of a mechanism that may explain the osteoblastic phenotype of human breast cancer cells that preferentially metastasize to bone.
منابع مشابه
Expression of the Osteoblast Differentiation Factor RUNX2 (Cbfa1/ AML3/Pebp2 A) Is Inhibited by Tumor Necrosis
The transcription factor RUNX2 (Cbfa1/AML3/Pebp2 A) is a critical regulator of osteoblast differentiation. We investigated the effect of the inflammatory cytokine tumor necrosis factor (TNF) on the expression of RUNX2 because TNF is known to inhibit differentiation of osteoblasts from pluripotent progenitor cells. TNF treatment of fetal calvaria precursor cells or MC3T3-E1 clonal pre-osteoblast...
متن کاملMyeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation.
Decreased bone formation contributes to the development of bone lesions in multiple myeloma (MM) patients. In this study, we have investigated the effects of myeloma cells on osteoblast formation and differentiation and the potential role of the critical osteoblast transcription factor RUNX2/CBFA1 (Runt-related transcription factor 2/core-binding factor Runt domain alpha subunit 1) in the inhib...
متن کاملThe Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion.
The Runx2 (Cbfa1/AML3) transcription factor and matrix metalloproteinase 9 (MMP9) are key regulators of growth plate maturation and bone formation. The genes for both proteins are characteristic markers of breast and prostate cancer cells that metastasize to bone. Here we experimentally addressed the compelling question of whether Runx2 and MMP are functionally linked. By cDNA expression array ...
متن کاملTranscriptional regulation of the human bone sialoprotein gene by fibroblast growth factor 2.
Fibroblast growth factor 2 (FGF2), a member of the FGF family, positively regulates bone formation and osteoblast differentiation. Bone sialoprotein (BSP) is highly expressed during early bone formation and may play a role in primary mineralization of bone. In the present study, FGF2 (10 ng/mL) was found to increase the levels of Runx2 and BSP mRNA at 3 and 12 h in human osteoblast-like Saos2 c...
متن کاملCell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts.
The Runx2 (CBFA1/AML3/PEBP2alphaA) transcription factor promotes lineage commitment and differentiation by activating bone phenotypic genes in postproliferative osteoblasts. However, the presence of Runx2 in actively dividing osteoprogenitor cells suggests that the protein may also participate in control of osteoblast growth. Here, we show that Runx2 is stringently regulated with respect to cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 63 10 شماره
صفحات -
تاریخ انتشار 2003